Energy cost of running and Achilles tendon stiffness in man and woman trained runners

نویسندگان

  • Jared R. Fletcher
  • Ted R. Pfister
  • Brian R. MacIntosh
چکیده

The energy cost of running (E run), a key determinant of distance running performance, is influenced by several factors. Although it is important to express E run as energy cost, no study has used this approach to compare similarly trained men and women. Furthermore, the relationship between Achilles tendon (AT) stiffness and E run has not been compared between men and women. Therefore, our purpose was to determine if sex-specific differences in E run and/or AT stiffness existed. E run (kcal kg(-1) km(-1)) was determined by indirect calorimetry at 75%, 85%, and 95% of the speed at lactate threshold (sLT) on 11 man (mean ± SEM, 35 ± 1 years, 177 ± 1 cm, 78 ± 1 kg, [Formula: see text]1 = 56 ± 1 mL kg(-1) min(-1)) and 18 woman (33 ± 1 years, 165 ± 1 cm, 58 ± 1 kg, [Formula: see text]2 = 50 ± 0.3 mL kg(-1) min(-1)) runners. AT stiffness was measured using ultrasound with dynamometry. Man E run was 1.01 ± 0.06, 1.04 ± 0.07, and 1.07 ± 0.07 kcal kg(-1) km(-1). Woman E run was 1.05 ± 0.10, 1.07 ± 0.09, and 1.09 ± 0.10 kcal kg(-1) km(-1). There was no significant sex effect for E run or RER, but both increased with speed (P < 0.01) expressed relative to sLT. High-range AT stiffness was 191 ± 5.1 N mm(-1) for men and 125 ± 5.5 N mm(-1), for women (P < 0.001). The relationship between low-range AT stiffness and E run was significant at all measured speeds for women (r (2) = 0.198, P < 0.05), but not for the men. These results indicate that when E run is measured at the same relative intensity, there are no sex-specific differences in E run or substrate use. Furthermore, differences in E run cannot be explained solely by differences in AT stiffness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achilles tendon strain energy in distance running: consider the muscle energy cost.

The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilit...

متن کامل

Does achilles tendon cross sectional area differ after downhill, level and uphill running in trained runners?

In this study we examined how hill running affects the Achilles tendon, a common location for injuries in runners. Twenty females ran for 10 min on each of three randomly ordered grades (-6%, 0 and +6%) at speeds selected to match the metabolic rates. Achilles tendon (AT) cross-sectional area (CSA) was imaged using Doppler ultrasound and peak vertical forces were analyzed using an instrumented ...

متن کامل

Running biomechanics: shorter heels, better economy.

Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model, it was predicted that the amount of en...

متن کامل

Sport-Specific Capacity to Use Elastic Energy in the Patellar and Achilles Tendons of Elite Athletes

Introduction: During running and jumping activities, elastic energy is utilized to enhance muscle mechanical output and efficiency. However, training-induced variations in tendon spring-like properties remain under-investigated. The present work extends earlier findings on sport-specific profiles of tendon stiffness and cross-sectional area to examine whether years of distinct loading patterns ...

متن کامل

Investigation of running foot strike technique on Achilles tendon force using ultrasound techniques and a Hill-type model

Background It is reported that 75% of long distance runners use a rearfoot strike (RFS) technique. This percentage decreases in faster runners, where the incidence of midfoot and forefoot strikers (FFS) increases [1]. It is possible that FFS better utilises the passive-elastic mechanisms of the lower limb reducing energy cost. Williams et al. [2] found runners who converted from RFS to FFS duri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013